Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ai-Ju Zhou, Ling-Ling Zheng and Ming-Liang Tong*

School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China

Correspondence e-mail: cestml@zsu.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{N}-\mathrm{C})=0.002 \AA$
R factor $=0.027$
$w R$ factor $=0.075$
Data-to-parameter ratio $=10.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

catena-Poly[[dimethanolcobalt(II)]-di- $\mu-1,5-$ dicyanamido]

A pair of L-shaped dicyanamide anions link the dimethanolcobalt(II) units into a one-dimensional ribbon running along the b axis of the monoclinic crystal structure of the title compound, $\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{~N}_{3}\right)_{2}\left(\mathrm{CH}_{4} \mathrm{O}\right)_{2}\right]_{n}$. The Co atom occupies a special position of $2 / m$ symmetry and the $\mathrm{C}_{2} \mathrm{~N}_{3}$ unit lies on a mirror plane. The coordination polyhedron of the Co atom is a slightly distorted octahedron.

Comment

The dicyanamide anion, $\left[\mathrm{N}(\mathrm{CN})_{2}\right]^{-}$(dca), is a versatile building block for the synthesis of a range of metal-organic coordination polymers owing to its capacity for binding to metal atoms in different modes and stabilizing high-spin states (Miller \& Manson, 2001; Batten \& Murray, 2003). The polymeric dicyanamide complexes possess interesting magnetic properties and unusual coordination architectures. A number of one-, two- and three-dimensional coordination polymers with different structural features have been reported, such as one-dimensional $\left[M(\mathrm{dca})_{2} L\right.$] chains $(L=$ neutral terminal ligand; Manson et al., 1999; Tong, Zhou et al., 2003), twodimensional $\beta-M(\mathrm{dca})_{2}$ sheets and three-dimensional rutilelike $\alpha-M(\mathrm{dca})_{2}$ networks (Miller \& Manson, 2001). We recently reported a series of structures of benzyltrialkylammonium tris(dicyanamido)metalates, $\quad\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{~N} R_{3}\right]$ -$\left[M(\mathrm{dca})_{3}\right]\left(R=n-\mathrm{C}_{4} \mathrm{H}_{9}, M=\mathrm{Mn}\right.$ and $\mathrm{Co} ; R=\mathrm{C}_{2} \mathrm{H}_{5}, M=\mathrm{Mn}$ and Fe; Tong, Ru et al., 2003), which exhibit μ-dca bridged three-dimensional architectures of the α-Po-like type.

(I)

The title compound, (I), the bis- MeOH adduct of $\mathrm{Co}(\mathrm{dca})_{2}$, forms one-dimensional chains in its crystal structure (Fig. 1), similar to that of $\left[\mathrm{Co}(\mathrm{dca})_{2}(\mathrm{DMF})_{2}\right]$ (Tong, Zhou et al., 2003). The Co center resides on the twofold axis along b. The Co atom has a slightly distorted $\mathrm{CoN}_{4} \mathrm{O}_{2}$ octahedral environment formed by four N atoms belonging to four different dca groups $[\mathrm{Co}-\mathrm{N}=2.1149(18) \AA$ A and two trans-coordinated O atoms of two MeOH ligands $[\mathrm{Co}-\mathrm{O}=2.070$ (2) \AA]. A pair of dca bridges link the Co centers, affording rigid one-dimensional ribbons parallel to the crystallographic b axis. Adjacent chains

Received 27 July 2004 Accepted 6 August 2004 Online 13 August 2004
are held together by an interchain hydrogen bond of the $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{N}$ type (Table 1), resulting in interesting extended twodimensional stair-like layers (Fig. 2). The title compound is isostructural with the reported manganese(II) and iron(II) analogs, $\left[M(\mathrm{dca})_{2}\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{2}\right](M=\mathrm{Mn}$ and Fe ; Manson et al., 1999; Batten et al., 1999).

Experimental

Cobalt(II) chloride ($0.12 \mathrm{~g}, 0.5 \mathrm{mmol}$) and sodium dicyanamide $(0.09 \mathrm{~g}, 1.0 \mathrm{mmol})$ were added to methanol $(15 \mathrm{ml})$ and the mixture was heated until the reagents dissolved. Pink crystals separated from the solution in about 75% yield after 5 d .

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{~N}_{3}\right)_{2}\left(\mathrm{CH}_{4} \mathrm{O}\right)_{2}\right]$
$M_{r}=255.11$
Monoclinic, $C 2 / m$
$a=12.356$ (4) A
$b=7.309$ (2) \AA
$c=6.508$ (2) A
$\beta=120.796(5)^{\circ}$
$V=504.9$ (3) \AA^{3}
$Z=2$
$D_{x}=1.678 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 276 reflections
$\theta=3.4-26.0^{\circ}$
$\mu=1.69 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, pink
$0.34 \times 0.30 \times 0.21 \mathrm{~mm}$

Data collection

Rigaku Mercury CCD diffractometer
ω scans
Absorption correction: multi-scan (CrystalClear; Rigaku, 2002)
$T_{\text {min }}=0.569, T_{\text {max }}=0.701$
989 measured reflections

Refinement

Refinement on F^{2}

$$
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0477 P)^{2}\right.
$$

$+0.1136 P]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.57$ e \AA^{-3}
$\Delta \rho_{\min }=-0.30 \mathrm{e}^{-3}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.075$
$S=1.20$
531 reflections
51 parameters
H atoms treated by a mixture of independent and constrained refinement

Figure 1
ORTEP (Johnson, 1976) plot depicting a fragment of the structure. Displacement ellipsoids are plotted at the 50% probability level; H atoms are shown as small spheres of arbitrary radii. [Symmetry codes: (a) $1-x$, $-y, 2-z$; (b) $1-x, y, 2-z$; (c) $x,-y, z$.]

Figure 2
ORTEP (Johnson, 1976) plot of the hydrogen-bonded layer structure.

We thank the Foundation for the Author of National Excellent Doctoral Dissertation of China and the Excellent Young Teachers Program of the MOE, People's Republic of China, for supporting this work.

References

Batten, S. R., Jensen, P., Kepert, C. J., Kurmoo, M., Moubaraki, B., Murray, K. S. \& Price, D. J. (1999). J. Chem. Soc. Dalton Trans. pp. 2987-2997.

Batten, S. R. \& Murray, K. S. (2003). Coord. Chem. Rev. 246, 103-130.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5139. Oak Ridge National Laboratory, Tennessee, USA.
Manson, J. L., Arif, A. M. \& Miller, J. S. (1999). J. Mater. Chem. 9, 979-983. Miller, J. S. \& Manson, J. L. (2001). Acc. Chem. Res. 34, 563-570.
Rigaku (2002). CrystalClear. Version 1.35. Rigaku Molecular Structure Corporation, Utah, USA.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. (Release 97-2). University of Göttingen, Germany.
Tong, M.-L., Ru, J., Wu, Y.-M., Chen, X.-M., Chang, H.-C., Mochizuki, K. \& Kitagawa, S. (2003). New J. Chem. 27, 779-782.
Tong, M.-L., Zhou, A.-J., Hu, S., Chen, X.-M. \& Ng, S. W. (2003). Acta Cryst. E59, m405-m407.

